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 Abstract:  The big data pattern analysis suffers from incorrect 

responses due to missing data entries in the real world. Data 

collected for digital movie platforms like Netflix and intelligent 

transportation systems is Spatio-temporal data. Extracting the 

latent and explicit features from this data is a challenge. We 

present the high dimensional data imputation problem as a 

higher-order tensor decomposition. The regularized and biased 

PARAFAC decomposition is proposed to generate the missing 

data entries. The biases are created and updated by a chaotic 

exponential factor in Adam's optimization, which reduces the 

imputation error. This chaotic perturbed exponentially update in 

the learning rate replaces the fixed learning rate in the bias 

update by Adam optimization. The idea has experimented with 

Netflix and traffic datasets from Guangzhou, China. 

Keywords: Tensor decomposition, PARAFAC, Adam 

optimization, Data imputation, etc. 

I. INTRODUCTION 

The low quality and homogenous data require the 

verification and validation process, which is more 

time-consuming. Data mining approaches are used to 

manage a large amount of data in a particular context. Data 

mining schemes increases the quality of data with a large 

amount of data set. The meaningful pattern and rules are 

discovering in a large amount of data by exploration and 

analyzing them. In data mining approaches, various numbers 

of models and methods are considered to filter large data. 

The data mining methods are divided into different 

categories based on objective evaluation. The main 

categories are classification, estimation, prediction, 

clustering, association, and profiling. As we studied in the 

literature [1-11], various data mining models are proposed 

for Big Data analytics. The missing data problem is a setback 

for big data analytics. Regeneration of missing entries with 

similar latent features with the rest of the data poses a 

challenge. We here pick two domains to impute the big data. 

Netflix movie recommendation data and data gathered for 

intelligent transportation. Both datasets are collected 

continuously by corresponding companies and analyzing 

them for imputation is quite complicated for such a vast 
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dataset. We convert the data into tensors and perform tensor 

operations to impute it. In the modern era, an intelligent 

transportation system (ITS) is used to collect large traffic 

data. Various mobile and stationary sensors are placed in the 

ITS configuration. The correct information collection in the 

transportation system represents the state of the system for 

the development of correct analysis. The collected data is not 

directly connected to the transportation system due to the 

presence of traditional data (traffic volume) and a new kind 

of data (Bluetooth and GPS data). The missing data problem 

has commonly arrived in a large traffic dataset. The missing 

data can degrade the performance of the intelligent 

transportation system. To improve the reliability of the 

traffic data collection and record the data mining approaches 

are used in state of the art. Previously various data 

imputation methods are proposed to solve the missing traffic 

data problem. The traffic data imputation problems are 

categorized into two sections: traffic volume imputation and 

traffic speed data estimation. Both traffic volume and traffic 

speed data have similar characteristics, like temporal and 

spatial correlation. Some imputation method of traffic 

volume data can be directly implemented to the traffic speed 

data. The traffic speed data can fluctuate more than traffic 

volume data. The traffic states, along with the closest roads, 

are correlated, which is implemented in the low dimension 

model. The matrix and tensor decomposition methods are 

used to obtain the missing data values [12-26]. The 

e-commerce market and digital platforms for entertainment 

offer a wide range of products and movies/songs etc. 

Selecting and browsing a movie of the tastes by the 

consumer is a tedious and cumbersome task. Also, the 

matching services to customer’s tastes may increase the 

revenue of the company too. Due to this, many companies 

are nowadays interested in the recommendation system. 

After the Netflix competition for the movie recommendation 

system, the analysis of the user’s pattern for a particular 

product/interest is more accepted by retailers. Several user 

events are analyzed to offer recommended movies from 

Netflix. The recommendation engine can’t bear the loss of 

information as it may result in a negative recommendation 

too. Continuous pattern analysis also requires clean data 

without missing entries, but that is not possible in real-life 

data collection. Data imputation plays a significant role here.  

The high dimensional data is converted into the tensor as it 

inherits the high algebraic information than the matrix. The 

purpose of the selection of traffic and Netflix data is, these 

contain the temporal as well as spatial resolutions. The 

pattern is learned by tensor matrix factorization for a part of 

the data, and that learning is used to impute the missing 

entries. This paper aims to propose the advanced tensor 

factorization for data imputation.  
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Contribution 

Our contribution to the work is two-fold: regularized tensor 

factorization and Adam optimization with dynamic learning 

rate. The data used in our work is a tensor matrix that is a 

multidimensional matrix.  

Several tensor factorization schemes are available like 

CANDECOMP/PARFAC, tucker, SVD, etc. [20, 22-28], but 

the PARAFAC method provides more stable tensor 

decomposition with faster convergence. The tensor is 

decomposed to rank one matrix. Few researchers used tensor 

decomposition for the high dimensional data imputations too 

[29] [30]. The PARAFAC decomposition still doesn’t deal 

with the unexpected differences in the data values, which are 

counted as noise in the data. We propose here modified 

regularized PARAFAC, which decomposes the tensor into 

three factors [20] as well as into bias matrices for those 

tensor factors which avoid the fall into local optima. 

We used the dynamic learning rate to update the bias values 

during Adam's optimization. The fixed learning rate of 0.001 

is changed to a logistic mapped chaotic exponential decaying 

learning rate with every iteration. 

Paper Organization 

Further, in this article, we have discussed previous related 

work in section 2. Section 3 discusses the problem in data 

imputation and PARAFC tensor factorization. The proposed 

extended PARAFC tensor factorization for imputation has 

been discussed in section 4, which is followed by simulation 

results in the next section. We conclude the results in section 

5.  

II. LITERATURE REVIEW 

State of the art schemes is utilized for the data mining 

process to achieve processed data.  A high-quality data 

mining approach was presented in [1] by using the K-nearest 

neighbor algorithm. The K-nearest neighbor algorithm had a 

wide range of applications in terms of smart data obtained for 

Big data context. Multiple smart data packages were 

developed with the K-nearest neighbor approach. A 

predictive data mining framework was presented with the 

help of various up to date algorithms schemes like machine 

learning [2]. The machine learning algorithms improves the 

computational efficiency in removal of unwanted noise from 

the massive dataset. The missing data and noise are the key 

characteristics of real-world data.  The Ghost algorithm was 

used to reconstruct the missing data from a large dataset that 

recover off period segments of missing data [3]. The ghost 

algorithm searched in a sequential manner dataset to achieve 

the data segment. A caching approach was also used to 

minimize the search space and improves the computational 

complexity to linear. In [4], various deep generative models 

were compared in terms of data mining. The key comparison 

among Variational Autoencoder (VAE) and Generative 

Adversarial Networks (GAN) was presented for imputing 

missing values problem. The imputation power of GAN and 

VAE approaches was improved by splitting methods to 

separate variables. A Graph Neural Network (GNN) model 

was enhanced for the missing data imputation (MDI) 

application. In the GNN approach, each edge of the graph 

shows the similarity between the different patterns. With the 

help of GNN, a Graph convolutional autoencoder was 

designed to reconstruct the complete dataset [5]. The 

adversarial loss and global information were included in the 

dataset during the reconstruction phase. A Distributed 

Neural Network (DNN) was designed for the imputation of 

missing value in terms of Big data context. The DNN was 

implemented in the spark and provided easy imputation [6]. 

The outcomes of the DNN data imputation method were 

compared with the K-nearest neighbor approach. They 

provided a better response. A self-developed competitive 

neural network Adaptive Response Theory 2 (ART2) was 

proposed for the data imputation [7]. The ensemble approach 

provided accurate results on intracluster non-missing value 

elements. The ART2 approach also improved imputation 

accuracy. The Big Data K-mean and Big Data Fuzzy 

imputation cluster-based methods were presented in [8]. 

Both the algorithms were provided better results than the 

simple eliminating faulty examples and easily implemented 

in the Spark Mlib configuration. Similarly, in [9], two 

algorithms were used to remove the noisy data from Big Data 

set. The two methods were Heterogeneous and Homogenous 

ensemble filters. These algorithms were formed with a 

combination of Deep learning classification models. The 

ensemble algorithms achieved smart datasets from Big Data 

set accurately and efficiently. The deep learning models 

required cleaned data to achieve better classification results. 

An MLClean approach was presented for the Big Data 

preprocessing to trained the Deep Learning model [10]. It 

provided data cleaning, unfair mitigation, and data 

sanitization. The MLClean approach was commonly used in 

Big Data analytics cases. The ROSEFW-RF algorithm was 

developed based on the Map-reduce function for imbalanced 

data mining [11]. The medical field data is imbalanced due to 

its number of parameters. To achieve balanced data, the 

relevant features, classes, category, and values are classified 

with the proposed ROSEFW-RF approach. The Random 

Forest classifier was used for the classification purpose and 

features evaluated with the evolutionary features weighting 

process. Various methods were proposed previously, which 

related to the tensor factorization with different types of 

datasets. In a study [12], the author provided the Bayesian 

CP factorization to handle the noisy tensor data. A 

non-deterministic model was developed using Bayesian CP 

factorization, which estimated the rank of CP automatically. 

A robust Bayesian generative model developed in [13] for 

tensor factorization. It provided the robustness to the 

boundary conditions and reduced the Gaussian noise, which 

minimizes the overfitting problem. The low-rank 

decomposition using a Bayesian model for multiway tensors 

data with missing observations was presented in [14]. This 

method was implemented for a large scale problem with 

linear configurations. Some real and benchmark datasets 

were tested with the above Bayesian model approaches. The 

Variation Bayesian (VB) techniques are commonly applied 

in the large scale models in the past. The single and coupled 

tensor factorization models were tested by the full Bayesian 

Inference using VB [15]. The full Bayesian Inference 

method was easily implemented to any large scale model. A 

fully Bayesian Probabilistic Matrix Factorization (PMF) 

model was presented in [16].  
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The overall model parameters and hyperparameters 

controlled the model capacity. The Bayesian PMF model 

was trained by the Markov Chain Monte Carlo Method by 

using the Netflix dataset and provided higher predicted 

accuracy. A factor-based algorithm was presented for the 

classification application known as tensor factorization. 

 The fully Bayesian Probabilistic Tensor Factorization (PTF) 

was used to analyze the large scale dataset [17]. 

Some real-world problems of classification were analyzed by 

the Bayesian PTF model with accurate outcomes. A 

Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) 

decomposition model was used to impute the 

multidimensional imbalance traffic data [18].  In tensor 

representation with BGCP, the accurate outcomes were 

found in the third-order case for both random missing and 

fiber missing traffic data scenarios. The multiple metrics and 

tensors combined joints were presented by the Bayesian 

Multi-tensor Factorization model [19]. The Bayesian MTF 

model analyzed the total number of data collection factors. A 

multidimensional EEG dataset was analyzed by the Bayesian 

Tensor Factorization model [20]. The noninformative EEG 

signals were removed from the BTF method, which 

improved the classification response in the medical research 

field. The BTF also eliminated the white noise present in the 

EEG dataset. A fully Bayesian system was presented for the 

automatically learning parameters of missing values traffic 

data model with Variational Bayes (VB) [21]. The data was 

collected from the urban traffic speed data set collected in 

Guangzhou, China. The two methods were tested on the 

traffic data imputation. The Bayesian Augmented Tensor 

Factorization (BATF) provided better accuracy in terms of 

missing values imputations.  

A three procedure framework was proposed for the missing 

traffic data recovery with traffic patterns recognition. The 

key latent features were learned by the truncated singular 

value decomposition (SVD) and removed the noise. These 

latent features were applied to the tensor decomposition, and 

missing data were evaluated with the combination of SVD 

–tensor decomposition (STD). The proposed STD approach 

provided higher accuracy in terms of missing traffic data 

[22]. A matrix factorization technique based on a K-nearest 

neighbor method was proposed for the Netflix missing data 

recovery [23]. The matrix factorization based KNN model 

provided higher accuracy, and it can be easily implemented 

on real-world datasets. The collaborative filtering 

approaches were applied for the data filter in [24, 25]. The 

unique properties of implicit feedback datasets were 

recognized by a factor model [25]. A scalar optimization 

algorithm (latent factor) was also suggested by the authors to 

scale the large size data linearly. Kingma et al. presented a 

method for stochastic optimization (Adam) based on the 

adaptive calculations of lower-order moments [26]. 

Table 1: List of studied approaches of data mining and tensor factorization 

Resea

rch 

paper 

Techniques Advantages Improved 

parameters 

Data Mining and imputation approaches 

1 KNN Achieved smart data in Big data 

context 

70% accuracy 

2 Machine learning models  Effective performance among all 

datasets 

NA 

3 Ghost algorithm Evaluated off period segments 

data 

18% higher 

F-Score 

4 GAN and VAE Improved missing data 

imputation 

90% accuracy 

5 Graph Convolutional 

Network 

Provided large missing data 

values in a short period of time 

NA 

6 Distributed Neural Network 

(DNN) 

Execution time is fast 70% speedup 

7 ART2 It can deal with outlier and 

improved imputation accuracy 

25% missing 

imputation accuracy 

8 Big Data K-mean and Big 

Data Fuzzy 

Easily implemented in Spark ML 

lib  

98% accuracy 

9 Heterogeneous and 

Homogenous ensemble filters 

Efficiently obtained the smart 

dataset from Big Data 

65% and 80% 

noise removal 

accuracy 

10 MLClean method Train accurate and fair models NA 

11 ROSEFW-RF Good balance and classification 

of classes  

NA 

 

 

 

 

http://www.ijsepm.latticescipub.com/


 

Tensor Data Imputation by PARAFAC with updated Chaotic Biases by Adam Optimizer 

21 

Retrieval Number: A1004011121/2021©LSP 

Journal Website: www.ijsepm.latticescipub.com 
 

Published By: 
Lattice Science Publication (LSP) 

Bayesian model approaches 

12 Bayesian CP Factorization Automatically determine the 

rank of the incomplete tensor 

Execution time 

improved 

13 Bayesian Robust Tensor 

Factorization (BRTF) 

It provided robustness to the 

outliers 

NA 

14 Scalable Bayesian low-rank 

decomposition 

It solved the large scale problem 

and provided linearity to the 

observed tensors  

Minimizes 

reconstructing errors   

15 Bayesian Tensor 

Factorization (BTF) 

Implemented on large models  90% accuracy 

with lesser execution 

time 

16 BPMF Easily trained with the Markov 

chain model and tested on the 100 

million video dataset Netflix 

NA 

17 BPTF Analyzed large scale dataset Higher latent 

features learning rate 

18 Extended BPMF model 

(BGCP) 

Impute multidimensional 

imbalance traffic data 

NA 

19 BMTF Joint multiple metrics and tensor NA 

20 BTF Tested multidimensional EEG 

dataset and accurately impute 

missing data in the large domain  

Minimize the 

standard error 

21 BATF Efficient impute high traffic 

missing data 

NA 

Tensor factorization approaches 

22 SVD with tensor 

decomposition (STD) 

Extract efficient latent features 

from missing traffic data 

Easily trained the 

large scale model 

23 KNN Higher accuracy in a real-world 

dataset 

Impute Netflix 

data  

24 Filter model Removal of noise in a large 

dataset 

NA 

25 Factor model and scalar 

optimization algorithm 

Implicit feedback dataset 

analyzed 

NA 

26 ADAM A stochastic approach for data 

classification 

NA 

 

III. PROBLEM STATEMENT 

3.1 Problem Statement 

Due to vast applications of tensor, its decomposition for 

multidimensional data has been the researcher’s interest. 

Their work can be broadly classified into two categories: 

decomposition by CANDECOMP/PARAFAC (Canonical 

Decomposition/ Parallel Factor), also referred to as CP and 

tucker factorization. Both are higher-order principal 

component analysis (PCA). The convex hull analysis in [36] 

proves the CP decomposition is better than tucker 

decomposition on the criteria of good fit analysis. The 

PARAFAC itself takes a long time in reaching the local 

minima solution and also has the probability to stuck in the 

local minima. To avoid it with local optima, we regularized 

the PARAFAC Tikhonov regularization factor. Still, this 

form of PARAFAC only considers the latent features, but the 

data is Spatio-temporal. So, we need to add the biases for all 

the three dimensions of the data, which can extract the 

temporal features too.    

Besides the decomposition part, the rank selection is also 

uncertain in the tensor decomposition. The Bayesian 

approach has also been suggested by a few researchers for 

rank selection [12-21]. But these focused either on prediction 

problems or factorization with missing data. Whereas we 

couldn’t find it suitable for data imputation problem as 

Bayesian optimization works preferably for automatic Rank 

detection for higher-order low-rank factorization. In the 

imputation application of CP, the normalized imputation 

error increases with the increase in rank. We have tested the 

scheme of regularized augmented PARAFACfor various 

ranks from 1-10. A plot in figure 1 demonstrates that rank 1 

is suitable for data imputation scheme and imputed data for 

this rank by PARAFAC, and regularized augmented 

PARAFAC is shown in figure 1(b). It supports our 

convention that PARAFAC lacks in providing a global 

solution for missing data generation. 
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Fig. 1. (a) Rank Selection for proposed regularized augmented PARAFAC (b) comparison of the iterated best value in 

each iteration of PARAFAC and suggested PARAFAC decomposition with Adam optimization 

Missing Data Generation 

A tensor  and matrix  are computed as   

and . The matrices , , 

, and  are generated by the random 

entries drawn from the standard normal distribution. A new 

matrix   is generated by a random setting of  

of the entries of  to be missing. So , here 

binary tensor is represented by the  which has an equal 

dimension of tensor  and  for the set  to 

missing. Figure 2 shows the tensor with random missing 

entries. 

 
Fig. 2. Arrangement of incomplete tensor by random 

indexing. 

IV. PROPOSED TENSOR FACTORIZATION 

4.1 Regularized-PARAFAC 

As discussed above, we factorize the tensor matrix by the 

PARAFAC method. For the data imputation in our work, the 

data is of third-order tensor   and as for large rank 

( ), the PARFAC decomposition can be shown as in 

equation 1 [29][33]. 

                 (1) 

Equation 1 holds for the sufficiently large rank  but since 

in our case, we are interested in the decomposition up to 

 [13]. The tensor matrix can be decomposed into N 

factors of rank 1 as: 

                      (2) 

Where  represents the cross product. For the third-order 

tensor, it is . The conviction of decomposition of 

equation 1 to the first-order tensor is: 

                        (3) 

The  Represents the Frobenius norm. This one is the 

non-convex optimization problem and can be solved 

iteratively as 

                                                               (4)  

The equation 4 has an issue of local optimum solution due to 

non-uniform scaling of factors [33], so Paatero [28] 

suggested the addition of a Tikhonov regularization factor in 

equation 4 which resolved the issue of many local solutions 

in equation 3 and updated it as 

       (5) 

Where  is a regulation parameter with . In our work, 

we are using the data set from China Traffic Data[13]. This 

kind of tensor data has three factors for road segments, the 

number of time slots, and recorded time intervals. Equation 5 

maps the combined rating for users and content in the latent 

space, but it is not always the case. The temporal dependency 

on the data is not examined in that, due to which the 

imputation might be less correct. This biasing for user and 

content must be included in equation 5 [29]. The augmented 

equation 5 is written in equation 6. This way, the PARAFAC 

factorization is called augmented PARAFAC. 

            (6) 

This can be further simplified as 

  (7) 
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Where , ,  are the bias factors for the three tensor 

dimensions,  is the average of all three factors [31]. The 

biases are the deviation of each factor from the average . 

The proposed tensor  is shown in figure 3. The factor 

matrix of the tensor can also be represented as 

. 

 
Fig. 3. Proposed augmented PARAFAC factorization for 3rd order tensor 

The proposed modified-PARAFACis an iterative process, 

and equation 7 is minimized by gradient descent 

optimization [13], Alternating least square method [31] 

recently. But these methods are easily stuck in local minima 

and less rate of convergence. The advancement in deep 

learning is dependent upon the fast and global optimized 

Adam optimization [35]. We factorize the tensor  by Adam 

optimization. The bias is also updated iteratively in each 

stochastic step. These are initialized at some random value 

between 0 and 0.1. Though the initial feeding point for these 

biases can be random, however for our application, we set 

,  where  represents the biases. Biases are updated 

in each iteration of Adam's optimization. Equation 6 is the 

objective function of adam optimization, and the error thus 

calculated is used to update the bias values. We multiply the 

error from equation 6 by an exponentially decreasing 

regularization parameter, which reduces with iteration to 

minimize the error. To add the chaotic perturbation in error, 

we multiply it with a less random factor, which is calculated 

by a logistic map.  The biases are updated as: 

                     (8) 

Here  is the deviation in the factors,  is a 

constant whose values if fixed to 20 in our case.  and  

represent the current iteration and maximum iteration in the 

adam optimization.  is the perturbed parameter by logistic 

mapping which is calculated as 

. The  is a system 

parameter . This way  and  are also 

updated.  

The pseudo-code for the update of biases is shown in 

algorithm1. 

Algorithm 1: Pseudo Code for the tensor biases update 

iteratively 

Input: ,  

Output: , , ,  

1. Initialize the , ,  with uniform random 

numbers in between 0 and 0.1 

2. Calculate the average  

3. While not converge do 

4.          For  

5.                 Update 

 

6.          end for 

7.          for j  

8.                  Update 

 

9.          end for 

10.          for t  

11.                 Update 

 

12.          end for 

13. end while loop 

V. EXPERIMENTS 

5.1 Datasets 

Traffic Dataset 

The Traffic dataset used in this work is released by the 

communication commission of Guangzhou municipality of 

China. The dataset provides speed data of the 214 road 

segment. It contains 61 days traffic activity of urban areas 

from 1 August 2016 to 30 September 2016. During each 

day144-speed value, observation is provided for each road 

segment with 10 minutes time window aggregation.   

Netflix Dataset 

This dataset is collected by Netflix, which shows the 

distribution of all the ratings Netflix achieved between 

October 1998 to December 2005. It consists of a total of 

100,480,507 ratings from 480,189 randomly chosen users on 

the 17,770 movie titles. Netflix also provides training data 

for validation purposes which consists of 1,408,395 ratings. 

The Netflix dataset provides a testset containing 2,817,131 

movie pairs with ratings. The latest movie pairs ratings are 

selected from a recent subset of users in the training dataset. 

5.2Evaluation 
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We have followed the random missing entries scheme for 

missing values generation. After creating the missing values 

for 10%, 20%, and 50%, we use rank 1 from figure 1 for the 

tensor data completion. The proposed decomposition 

solution with bias update is compared with the state of the art 

schemes. We compared the imputation with Tucker 

decomposition [30], Bayesian inference [29] for the random 

missing data. The Netflix dataset is also checked for only 

random missing entries. The proposed scheme is also 

evaluated for gradient descent (GD) and Adam optimization 

for the optimal solution of equation 6. The evaluation of 

results is statistically done based on mean absolute error 

(MAE), mean absolute percentage error (MAPE), and root 

means square error (RMSE). If the  and  are estimated 

and true missing values, then these performance measures 

are defined as: 

 

 

 

Netflix dataset and traffic datasets are evaluated by the 

proposed scheme and compared with states of the art SVD 

combined tucker decomposition [30], BATF [29], BGCP 

[20], BCPF [21], and modified PARAFAC variants. The 

schemes in [20], [21],[29] have common Bayesian Gaussian 

tensor factorization. The CANDECOMP/PARAFAC factors 

are trained by Bayesian optimization. The [21] presented the 

hyperparameter of automatic rank determination. In contrast, 

the solution doesn’t differ significantly from other variants in 

[20] and [29] as the researchers only used the higher number 

of hyperparameters for optimization. However, the Bayesian 

optimization of factorization parameters performed well 

over Tucker-SVD decomposition [30]. Table 2 shows the 

performance comparison of the proposed data imputation 

scheme for random missing entries for traffic datasets. It can 

be observed from table 2 that performance is somewhat good 

at lower missing ratio; however, the change is not significant 

with increasing missing values. The dynamic, chaotic 

learning rate and modified regularized tensor decomposition 

lead to superior performance than state of the art methods. 

Figure 4 represents the imputed tensor for different random 

missing ratios for the traffic dataset by the proposed scheme. 

The proposed scheme doesn’t get affected by the change in 

the missing rate like other schemes. 

 

Table 2: Comparative Performance Evaluation for randomly Missing Entries for Traffic Dataset 
 10% Missing 30% Missing 50% Missing 

MA

E 

MAP

E 

RMS

E 

MA

E 

MAP

E 

RMS

E 

MA

E 

MAPE RMS

E 

 Proposed 

Imputation 

3.44

9 

0.08

26 

3.61

01 

3.45

37 

0.08

31 

3.60 3.47

07 

0.0834 3.61

16 

Variants 

of 

Proposed 

Scheme 

Modified 

PARAFAC-E-Biased 

3.45

9 

0.08

33 

3.69

5 

3.46

2 

0.08

48 

3.78

4 

3.51

03 

0.0890

4 

3.81

9 

Modified 

PARAFAC-Adam 

optimization 

3.53

61 

0.08

72 

3.70 3.53

80 

0.08

96 

3.79 3.78

0 

0.0907 3.82

9 

Modified 

PARAFAC-GD 

Optimization 

3.81

01 

0.09

20 

3.70

27 

3.81

83 

0.09

28 

3.72

60 

3.81

90 

0.0929 3.71

90 

States 

of the art 

schemes 

SVD-Tucker [30] - - - 4.38

21 

- 6.10

60 

4.37

94 

- 6.10

07 

BATF [29] - 0.08

25 

3.57

45 

- 0.08

34 
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(b) 

 
(c) 

Fig. 4. The imputed tensor with random missing entries percentage (a) 50% (b) 30 % and (c) 10% 

The bias to generate the missing values is updated by 

gradient descent (GD) optimization in [30]; however, as 

discussed in the previous section, the Adam optimizer is 

better than GD. We have followed the update as in algorithm 

1. The SVD-Tucker decomposition proposed the constant 

learning rate to update the bias. Still, it has been proven 

recently that for the sparse dataset, the adaptive learning rate 

is better than a constant learning rate. The learning rate can 

be adaptive dependent upon time, step size, or exponentially 

changing with iteration. Other Deep learning toolboxes like 

Keras also provide the feature to use the adaptive learning 

rate during training. We have perturbed the exponentially 

decaying learning rate by logistic mapping. It is a linear 

mapping with variable . 

The  is a system parameter  The logistic 

mapping shows different behavior for different values of . 

Figure 5 shows the stationary, periodic, and complete 

bifurcation diagram for the logistic map. Figure 5(a) and 5(b) 

shows the behavior of logistic mapping if the system 

parameter   is less than 1 and  respectively. 

For  , updated biases with this logistic map value 

can lead to premature convergence of the training. 

Conclusively, data imputation won’t be similar to extracted 

latent features of the rest of the data. The non-diminishing 

oscillatory behavior (figure 5(b)) also doesn’t converge at 

all. The chaotic behavior starts beyond 3.56994, and figure 

5(c) shows the logistic mapping for a complete range of 

. The area between   is the stable 

oscillations area, and convergence in optimization can be 

achieved in this area. The solid lines in figure 5(c) point to 

the stable solution. The more uniform is the bias, the less 

deviation is observed in variance for a dimension. Just to 

recall, the three biases are for the three dimensions of the 

Spatio-temporal data. The size of a bias matrix is equal to the 

size of the decomposed factor matrices. The first row in 

figure 6 shows the uniformity comparison for the bias 

matrices for the final selected solution for a 50% missing 

ratio. We have used the ternary plot since we have 

3-dimensional tensor. The final updated bias for the 

minimum gradient in equation 7 is recorded for plotting. The 

vertices of the ternary plot represent the updated bias by 

Adam optimized modified regulated PARAFAC with a 

dynamic learning rate, with a fixed learning rate and 

proposed PARAFAC segmentation by GD optimization. 

These three plots are for each dimension of the data. The dots 

inside the plots are the bias values that arrange themselves in 

an elliptical shape with alignment towards the proposed 

scheme. The elliptical shape is formed due to uniformity in 

the bias values; the least is the standard deviation; more is the 

uniformity.  

The alignment towards proposed scheme vertex indicates the 

clustering of biases is greatly affected by larger bias 

magnitudes generated by the proposed scheme. However, the 

uniformity of bias , as indicated in figure 6(b) for 

bias for the number of days. The second row in figure 7 has 

the plots for imputed values and original entries. We have 

plotted these curves for a few samples. The sparse tensor’s 

entries are also plotted in 6(d) whose entries are all zeros for 

these samples.  
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Fig. 5.Stationary, periodic and bifurcation behavior of logistic mapping 

 

Fig. 6. Ternary Plots between final bias values after training by proposed chaotic exponential updated bias,  updated 

bias with constant learning rate and Gradient Descent updated (a) bias for road segment (b) bias for traffic speed at 

various Days (c) Bias for the 10 minutes time windows. The second row of the comparative plot for original and 

estimated traffic data with (d) proposed tensor decomposed imputation scheme (e) proposed  decomposition scheme 

with a fixed learning rate and (f) proposed scheme with Gradient descent optimization
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Fig. 7. Performance comparison for the Netflix data imputation 

For the Netflix dataset, we have compared the proposed 

scheme with its three other variants only due to unavailability 

of state of the art schemes results on this data. The figure 

shows the performance plot comparison for the Netflix 

dataset. This dataset has primarily tested for the Netflix prize 

competition for recommending the most suitable movies to 

the users. The modified PARAFAC with the proposed 

dynamic learning rate has minimum MAPE and RMSE. The 

MAPE has shown no significant change with the increase in 

the missing entries, but with 80% missing data, all variants 

have degraded. However, no such behavior is recorded for 

MAE and RMSE curves. The proposed scheme has the least 

MAPE and RMSE values at various missing ratios. This 

dataset also strengthens the theory that Adam optimization 

outperforms the PARAFAC with gradient descent 

optimization. The bias for each dimension of the Netflix data 

is shown in the second row of figure 7. 

VI. CONCLUSION 

The data imputation is the first step in the data denoising and 

to process the data with deep learning. In this research article, 

we have profoundly compared the performance of imputed 

tensor data with state of the art schemes. The Spatio-temporal 

real-world tensor data can be decomposed into the low-rank 

matrix for imputation using two kinds of decomposition 

primarily: CD/PARAFAC and Tucker decomposition. We 

compared the proposed modified PARAFAC with a dynamic 

learning rate with the latest work of Tucker-SVD 

decomposition on the Traffic dataset. It has been observed 

that our method is able to reduce the mean absolute error by 

20% for the 50% missing entries in the data. Few other 

researchers have focused on the Bayesian learning training 

for the tensor decomposition. It has also been suggested 

previously that automatic rank determination leads to a better 

generation of missing entries. Our dynamic Adam 

optimization scheme has powered the modified PARAFAC 

with a 0.48% reduced root mean square error for 50 % 

missing data. We have tested the algorithm on Netflix movies 

dataset too. The size of the dataset has backed the 

performance due to our hardware constraint, but it has been 

noticed that dynamically learned modified PARAFAC had 

won the competition. In the next part of our research, we will 

test the performance on Hadoop and scala as the large size of 

the data created the havoc in the testing. We will also cluster 

the imputed tensor and semantically compared the 

imputation.  
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